Search for Saturn’s X-ray aurorae at the arrival of a solar wind shock

نویسندگان

  • G. Branduardi-Raymont
  • P. G. Ford
  • K. C. Hansen
  • L. Lamy
  • A. Masters
  • B. Cecconi
  • A. J. Coates
  • M. K. Dougherty
  • G. R. Gladstone
  • P. Zarka
چکیده

[1] After a decade of observations, evidence for X-ray auroral emission from Saturn has yet to be found. By analogy with processes known to take place on Jupiter, Saturnian X-ray aurorae may be expected to be powered by charge exchange (CX) between energetic ions and the planet’s atmospheric neutrals; if the ions are of solar origin, the emission should be brightest during episodes of enhanced solar wind (SW). We have explored this possibility by propagating SW parameters measured near the Earth to Saturn, and triggering X-ray observations at the time SW enhancements were expected to reach the planet. This was done in April–May 2011 with the Chandra X-ray Observatory, and we report on two observations carried out at the time when a significant SW disturbance reached Saturn, as indicated by Cassini magnetic field, plasma and radio measurements: variability is observed between the two Chandra datasets, but we do not find evidence for X-ray brightening in the auroral regions. The variability can be explained by scattering of solar X-rays in Saturn’s atmosphere during an episode of solar X-ray flaring. We conclude that the strength of any CX auroral X-ray emission on Saturn was below Chandra’s detectability threshold. By-products of this investigation are stringent upper limits on the X-ray emission of Titan and Enceladus. The Cassini measurements concurrent with the Chandra observations confirm and pinpoint temporally the arrival of the SW enhancement at Saturn. SW propagation predictions are a useful tool for investigating and interpreting the effects of SW interactions with planetary environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Response of Jupiter’s and Saturn’s auroral activity to the solar wind

[1] While the terrestrial aurorae are known to be driven primarily by the interaction of the Earth’s magnetosphere with the solar wind, there is considerable evidence that auroral emissions on Jupiter and Saturn are driven primarily by internal processes, with the main energy source being the planets’ rapid rotation. Prior observations have suggested there might be some influence of the solar w...

متن کامل

A comparison of magnetic overshoots at the bow shocks of Mercury and Saturn

[1] TheMErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft at Mercury and the Cassini spacecraft at Saturn provide us with orbiters around planets at more diverse heliocentric distances than ever before. The dramatically different solar wind conditions at these two planets should mean that Mercury’s bow shock is considerably weaker (lower Mach numbers) than Satu...

متن کامل

Statistical validation of a solar wind propagation model from 1 to 10 AU

[1] A one-dimensional (1-D) numerical magnetohydrodynamic (MHD) code is applied to propagate the solar wind from 1 AU through 10 AU, i.e., beyond the heliocentric distance of Saturn’s orbit, in a non-rotating frame of reference. The time-varying boundary conditions at 1 AU are obtained from hourly solar wind data observed near the Earth. Although similar MHD simulations have been carried out an...

متن کامل

Uranus’ aurorae past equinox

The aurorae of Uranus were recently detected in the far 2 ultraviolet with the Hubble Space Telescope (HST) pro3 viding a new, so far unique, means to remotely study the 4 asymmetric Uranian magnetosphere from Earth. We ana5 lyze here two new HST Uranus campaigns executed in Sept. 6 2012 and Nov. 2014 with different temporal coverage and 7 under variable solar wind conditions numerically predic...

متن کامل

Open flux estimates in Saturn’s magnetosphere during the January 2004 Cassini-HST campaign, and implications for reconnection rates

[1] During 8–30 January 2004, a sequence of 68 UV images of Saturn’s southern aurora was obtained by the Hubble Space Telescope (HST), coordinated for the first time with measurements of the upstream interplanetary conditions made by the Cassini spacecraft. Using the poleward edge of the observed aurora as a proxy for the open-closed field line boundary, the open flux content of the southern po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013